164 research outputs found

    ProFunc: a server for predicting protein function from 3D structure

    Get PDF
    ProFunc () is a web server for predicting the likely function of proteins whose 3D structure is known but whose function is not. Users submit the coordinates of their structure to the server in PDB format. ProFunc makes use of both existing and novel methods to analyse the protein's sequence and structure identifying functional motifs or close relationships to functionally characterized proteins. A summary of the analyses provides an at-a-glance view of what each of the different methods has found. More detailed results are available on separate pages. Often where one method has failed to find anything useful another may be more forthcoming. The server is likely to be of most use in structural genomics where a large proportion of the proteins whose structures are solved are of hypothetical proteins of unknown function. However, it may also find use in a comparative analysis of members of large protein families. It provides a convenient compendium of sequence and structural information that often hold vital functional clues to be followed up experimentally

    MGOS: A library for molecular geometry and its operating system

    Get PDF
    The geometry of atomic arrangement underpins the structural understanding of molecules in many fields. However, no general framework of mathematical/computational theory for the geometry of atomic arrangement exists. Here we present "Molecular Geometry (MG)'' as a theoretical framework accompanied by "MG Operating System (MGOS)'' which consists of callable functions implementing the MG theory. MG allows researchers to model complicated molecular structure problems in terms of elementary yet standard notions of volume, area, etc. and MGOS frees them from the hard and tedious task of developing/implementing geometric algorithms so that they can focus more on their primary research issues. MG facilitates simpler modeling of molecular structure problems; MGOS functions can be conveniently embedded in application programs for the efficient and accurate solution of geometric queries involving atomic arrangements. The use of MGOS in problems involving spherical entities is akin to the use of math libraries in general purpose programming languages in science and engineering. (C) 2019 The Author(s). Published by Elsevier B.V

    A Broadband Left-Handed Metamaterial Microstrip Antenna with Double-Fractal Layers

    Get PDF
    This paper proposes a microstrip patch antenna based on the left-handed metamaterial concept, using planar periodic geometry, which results in improved characteristics. This periodic geometry is derived from fractal shapes, which have been widely used in antenna engineering. The metamaterial property was obtained as a result of the double-fractal structure on both the upper and the bottom sides of the antenna. The final structure has been optimized to enhance bandwidth, gain, and radiation characteristics of the microstrip antenna. This combination significantly improved antenna performance; our design could support an ultrawide bandwidth ranging from 4.1 to 19.4 GHz, demonstrating higher gain with an average value of 6 dBi over the frequency range and a peak of 10.9 dBi and a radiation capability directed in the horizontal plane of the antenna

    Structure of SAICAR synthase from Thermotoga maritima at 2.2 Å reveals an unusual covalent dimer

    Get PDF
    The crystal structure of phophoribosylaminoimidazole-succinocarboxamide or SAICAR synthase from T. maritima at 2.2 Å revealed an unusual covalent dimer

    Mapping the Constrained Coding Regions in the human genome to their corresponding proteins

    Get PDF
    Constrained Coding Regions (CCRs) in the human genome have been derived from DNA sequencing data of large cohorts of healthy control populations, available in the Genome Aggregation Database (gnomAD) [1]. They identify regions depleted of protein-changing variants and thus identify segments of the genome that have been constrained during human evolution. By mapping these DNA-defined regions from genomic coordinates onto the corresponding protein positions and combining this information with protein annotations, we have explored the distribution of CCRs and compared their co-occurrence with different protein functional features, previously annotated at the amino acid level in public databases. As expected, our results reveal that functional amino acids involved in interactions with DNA/RNA, protein-protein contacts and catalytic sites are the protein features most likely to be highly constrained for variation in the control population. More surprisingly, we also found that linear motifs, linear interacting peptides (LIPs), disorder-order transitions upon binding with other protein partners and liquid-liquid phase separating (LLPS) regions are also strongly associated with high constraint for variability. We also compared intra-species constraints in the human CCRs with inter-species conservation and functional residues to explore how such CCRs may contribute to the analysis of protein variants. As has been previously observed, CCRs are only weakly correlated with conservation, suggesting that intraspecies constraints complement interspecies conservation and can provide more information to interpret variant effects
    corecore